
Comparative Pharmacodynamics of
Single-Dose Oritavancin and Daily High-
Dose Daptomycin Regimens against
Vancomycin-Resistant Enterococcus
faecium Isolates in an In Vitro
Pharmacokinetic/Pharmacodynamic
Model of Infection

Adam Belley, David Lalonde-Séguin,* Francis F. Arhin, Greg Moeck
The Medicines Company, Ville St-Laurent, Quebec, Canada

ABSTRACT There are limited therapeutic options to treat infections caused by
vancomycin-resistant Enterococcus faecium (VREfm). The lipoglycopeptide orita-
vancin exhibits in vitro activity against this pathogen, although its utility against
infections caused by VREfm has not been clinically established. In this study, the
pharmacodynamic activity of free-drug levels associated with 12 mg/kg/day of
daptomycin and a single 1,200-mg dose of oritavancin were determined against
three VanA VREfm isolates in an in vitro pharmacokinetic/pharmacodynamic
model.
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Vancomycin-resistant enterococci (VRE) are an important cause of nosocomial in-
fections in the United States (1, 2). The oxazolidinone linezolid remains the only

agent indicated for infections caused by vancomycin-resistant Enterococcus faecium
(VREfm). Although the lipopeptide daptomycin is not indicated for the treatment of VRE
infections, high-dose regimens (�8 mg/kg/day, exceeding the approved dose of 6
mg/kg/day for Staphylococcus aureus bloodstream infections) are often considered for
first-line therapy (3, 4). Higher doses of daptomycin may improve outcomes by maxi-
mizing exposure to compensate for the elevated daptomycin MICs of VRE relative to S.
aureus and by limiting the emergence of daptomycin nonsusceptibility (5, 6).

The long-acting lipoglycopeptide oritavancin is approved as a single 1,200-mg dose
treatment of acute bacterial skin and skin structure infections caused by Gram-positive
pathogens (7). Oritavancin exerts in vitro activity against VRE isolates expressing both
the VanA and VanB phenotypes (8–10). It has shown efficacy in a rat model of vancomycin-
resistant E. faecium bloodstream infection (11) and enhanced activity in combination
with gentamicin in a rabbit model of enterococcal endocarditis (12, 13). In this study,
we describe the pharmacodynamic (PD) activity of free-drug levels associated with 12
mg/kg/day of daptomycin and a single 1,200-mg dose of oritavancin against clinical
isolates of VREfm in an in vitro pharmacokinetic (PK)/PD model.

(Part of this work was presented at IDWeek 2016, New Orleans, LA, 26 to 30 October
2016 [14].)

Oritavancin (The Medicines Company, Parsippany, NJ) and daptomycin (APIChem
Technology Company, Hangzhou, China) broth microdilution MICs of the three VanA
VREfm clinical isolates ATCC 51559, B7181440, and B7231527 were determined follow-
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ing CLSI M07-A10 guidelines (6) using the quality control isolate Enterococcus faecalis
ATCC 29212 to assess appropriate drug and assay performance (7). MICs of the derived
mutants that survived daptomycin challenge were determined before and after serial
passage on nonselective medium (Mueller-Hinton agar) for 5 days to assess the stability
of the susceptibility changes. Subcultures of the VREfm isolates in exponential phase
were inoculated at 106 CFU/ml into a dilutional one-compartment in vitro PK/PD model
(15) containing 250 ml of cation-adjusted Mueller-Hinton broth (CAMHB) supple-
mented with either 50 �g/ml CaCl2 (for daptomycin) or 0.01% polysorbate 80 (for
oritavancin). Daptomycin was added as bolus daily doses and a pump flow rate (0.34
ml/min for 72 h) was used to simulate free-drug exposures expected from 12 mg/kg/
day in healthy volunteers (assuming protein binding of 91.5%, a free peak concentra-
tion [ƒCmax] of 15.6 �g/ml, a half-life [t1/2] of 8 h, and an area under the concentration-
time curve from 0 to 24 h [ƒAUC0 –24 h] of 171 �g · h/ml) (16). For oritavancin, a single
dose was infused over 3 h and flow rates (1.25 ml/min for 5 h, 0.94 ml/min for 1 h, 0.31
ml/min for 23 h, and 0.04 ml/min for 43 h) were used to approximate the mean
free-drug concentration-time profile (assuming protein binding of 85% [17]; an ƒCmax

of 20.7 �g/ml; alpha, beta and gamma t1/2 of 2.3 h, 13.4 h, and 245 h, respectively, and
an ƒAUC0 –24 of 178 �g · h/ml) observed in patients receiving a 1,200-mg dose (15, 18).
After 5 h of drug exposure, cultures were transferred to new sterilized in vitro PK/PD
model systems to ensure that only drug-exposed bacteria were present. For control
cultures (no drug exposure), fresh media were supplied using the flow rates indicated
for oritavancin over 24 h (until turbid cultures were apparent). Aliquots were sampled
at the indicated times for bacterial viability as previously described (15) and then frozen
at �20°C until drug concentrations were determined. Statistical differences (P � 0.05)
in mean changes in bacterial viability (log CFU/ml) relative to inoculum were compared
by t test. Daptomycin concentrations were quantified using a described bioassay (15).
Oritavancin was quantified by fluorescence polarization using a fluorescein-labeled
D-Ala-D-Ala peptide (Ac-L-Lys-Ala-D-Ala-OH; Pharmaron, Irvine, CA) (19). Oritavancin
standards (0.06 to 32 �g/ml) were prepared in CAMHB containing 0.01% P80 (assay
linear range of sensitivity 0.25 �g/ml to 16 �g/ml); samples from the in vitro PK/PD
model were diluted 1 in 4 in CAMHB. Assays (100 �l) were performed in 96-well plates
(reference number 3694; Corning Inc., Corning, NY) using a final concentration of 90 nM
of the fluorescein-labeled peptide and excitation and emission wavelengths of 485 nm
and 535 nm, respectively. PCR amplification of the liasFSR locus and cls gene from
genomic DNA (GenElute Bacterial Genomic DNA kit; Sigma-Aldrich, Oakville, Ontario,
Canada) was performed using published primer sequences (20). For amplification of liaS
in ATCC 51559, the primers 5=-AAAGGGATAGGCAGAACACG-3= (forward) and 5=-CAAT
ACCAGCTACTCGTTCTTTGA-3= (reverse) were used due to allelic sequence variation.
Sanger sequencing of the amplicons was performed at McGill University and the
Génome Québec Innovation Centre (Montreal, Québec, Canada).

The three VREfm isolates were susceptible to daptomycin (MIC � 4 �g/ml), exhib-
iting daptomycin MICs of 2 to 4 �g/ml (Table 1); oritavancin MICs ranged from 0.06 to
0.5 �g/ml. Exposure of the VREfm isolates to daptomycin at free-drug concentrations
expected from dosing with 12 mg/kg/day (obtained PK parameters shown in Table 2)
resulted in rapid bactericidal activity (�3 log kill relative to the starting inoculum)
within 5 h and sustained suppression of regrowth for 24 h (Fig. 1 and Table 3). However,
each isolate exhibited instances of bacterial regrowth by 48 h following exposure to the
second dose of daptomycin (in 1 of 4 replicates of ATCC 51559 [Fig. 1A, inset], 4 of 4
replicates of B7181440 [Fig. 1B], and 3 of 4 replicates of B7231527 [Fig. 1C]). Regrowth
among the three VREfm isolates was coincident with stable increases in daptomycin
MICs ranging from 4- to 8-fold (daptomycin MICs of 16 �g/ml) relative to their
corresponding parental isolates (Table 1). In one derived mutant (1440-141-1), the
oritavancin MIC also increased 4-fold above its parental MIC (Table 1) and therefore it
will be of interest to elucidate the genetic changes that provoke cross-reduced sus-
ceptibility to oritavancin in VREfm. Other studies have also shown the development of
reduced susceptibility to daptomycin in VREfm (including ATCC 51559) when modeling
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free-drug exposures associated with �10 mg/kg/day (16, 21). In contrast, modeling of
total drug exposures (in the presence of 3.5 g/dl of human albumin) associated with
�10 mg/kg/day prevented the development of reduced susceptibility (5, 6) and
established a total AUC0 –24/MIC (area under the concentration-time curve from 0 to 24
h divided by the MIC) value of 781 as a cutoff to prevent the emergence of reduced
susceptibility for the tested VREfm isolate. The projected total AUC0 –24/MIC ratio for
VREfm ATCC 51559 and B7181440 is 953 (ƒAUC0 –24 of 162, 91.5% protein binding, and
daptomycin MICs of 2 �g/ml), an exposure that exceeded the cutoff value but did not
prevent emergence of reduced susceptibility. In immunocompetent hosts, it is plausible
that the small population of daptomycin-nonsusceptible bacteria that emerge (as
shown in Fig. 1) could be eliminated by the immune system. Nevertheless, case reports
of emergence of reduced susceptibility in patients receiving 10 mg/kg/day have been
published (22, 23) and hence the appropriateness of the current daptomycin suscep-
tibility breakpoint and high-dose daptomycin regimens for enterococci are under
scrutiny (24).

TABLE 1 Characterization of VREfm parental isolates and derived mutants that survived
daptomycin challenge in the in vitro PK/PD model

Parental isolate or
derived mutant

MIC (�g/ml) ofa:

MutationbDaptomycin Oritavancin

ATCC 51559 2 0.25 NAc

51559-146-4d 16 0.25 Unknown

B7181440 2 0.06 NA
1440-140-1d 16 0.12 Unknown
1440-140-2d 16 0.12 LiaF truncation
1440-141-1d 16 0.25 Unknown
1440-141-2d 16 0.12 LiaF L181S

B7231527 4 0.5 NA
1527-140-4d 16 1 LiaS V129E
1527-141-3d 16 0.5 Unknown
1527-141-4d 16 0.25 Unknown

aModal MICs are presented from �3 independent determinations.
bMutations in the liaFSR system and cardiolipin synthase gene cls were determined by DNA sequencing.
cNA, not applicable.
dDaptomycin-nonsusceptible derived mutant. One of four replicates of ATCC 51559, four of four replicates of
B7181440, and three of four replicates of B7231527 showed regrowth of derived mutants with reduced
susceptibility to daptomycin following daptomycin exposure in the in vitro PK/PD model. MICs of the
derived mutants were unchanged following 5 days of passage on nonselective medium.

TABLE 2 Pharmacokinetic parameters obtained for the indicated dosing regimens in the
in vitro PK/PD model

Parametera

Daptomycin, 12 mg/kg/day
Oritavancin, 1,200-mg
single dose

Targetedb Obtained � SD Targetedc Obtained � SD

ƒCmax (�g/ml) 15.6 15.1 � 0.2 20.7 20.1 � 3.1
ƒAUC0–24 (�g · h/ml) 171 162 � 7.7 178 164 � 30.5
ƒAUC0–72 (�g · h/ml) ND ND 246 223 � 46.2
t1/2 (h) 8 8.1 � 0.5 ND ND
aƒCmax, free peak concentration; ƒAUC0 –24, area under the concentration-time curve from 0 to 24 h;
ƒAUC0 –72, area under the concentration-time curve from 0 to 72 h; t1/2, half-life; SD, standard deviation; ND,
not determined.

bThe targeted PK values for daptomycin were derived from Benvenuto et al. (28) and the prescribing
information (29) with the assumption of 91.5% protein binding. The daptomycin t1/2 in the in vitro PK/PD
model was determined by nonlinear regression analysis using GraphPad Prism 6 software. The targeted
ƒAUC (area under the concentration-time curve for the free, unbound fraction of a drug) values were
calculated using a simulated daptomycin concentration-time profile (Prism 6) that respects the targeted PK
parameters (ƒCmax of 15.6 �g/ml and t1/2 � 8 h).

cThe targeted PK values for oritavancin were derived from reference 18 and assuming 85% protein binding.
The targeted ƒAUC values were calculated (Prism 6) from the mean oritavancin concentration-time profile
obtained from population PK modeling (18).
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Infusion of oritavancin over 3 h into the in vitro PK/PD model (obtained PK
parameters shown in Table 2) resulted in bactericidal activity against the three VREfm
isolates that was significantly less rapid than that of daptomycin over the first 7 h of
exposure (P � 0.05) (Table 3 and Fig. 1), as bacterial counts were reduced by approx-
imately 1.7 log. Whereas bacterial killing by oritavancin was not significantly different
to that of daptomycin at 24 h (P � 0.05) (Table 3), oritavancin reduced counts of all
three VREfm isolates to below the limit of detection (�66.7 CFU/ml) between 48 and
72 h (Fig. 1) with suppression of regrowth of B7181440 and B7231527 that differed
significantly from the regrowth of those isolates at 72 h following daptomycin exposure
(P � 0.05) (Table 3). A limitation of this study is that the duration of oritavancin
exposure was limited to 72 h and therefore it is unknown whether longer exposures
that more completely represent the terminal half-life of oritavancin (245 h) would
confirm the suppression of regrowth.

FIG 1 Pharmacodynamic activity of daptomycin and oritavancin at free-drug exposures associated with
12 mg/kg/day daptomycin (green triangles) and a single 1,200-mg dose of oritavancin (blue circles)
against the clinical isolates of VanA VREfm ATCC 51559 (A), B7181440 (B), and B7231527 (C) in an in vitro
PK/PD model over 72 h. Mean values � standard deviation (SD) are from two independent experiments
done in duplicate. Control cultures are shown for each isolate (black diamonds), using the flow rates for
oritavancin to supply fresh drug-free medium over 24 h. The inset in panel A depicts the single
occurrence of regrowth of ATCC 51559 following exposure to daptomycin. The inset in panel C depicts
the single occurrence of eradication of B7231527 following exposure to daptomycin. The dashed line
indicates the limit of detection (�66.7 CFU/ml).
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Mutations in the cardiolipin synthase gene cls and the three-component regulatory
system operon liaFSR have been implicated in clinical development of reduced sus-
ceptibility to daptomycin in VREfm isolates (20, 25). No mutations in cls were observed
in the derived daptomycin-nonsusceptible mutants. A total of 171 singlenucleotide
polymorphisms (SNPs) were observed within the liaFSR operon of ATCC 51559 relative
to its counterpart shared by B7181440 and B7231527 (data not shown); the SNPs
accounted for 7, 12, and 3 amino acid differences in LiaF, LiaS, and LiaR, respectively.
Queries of the GenBank database revealed that both allelic variations are conserved in
different E. faecium isolates (data not shown). Three of the eight derived mutants had
incurred mutations within the liaFSR locus (Table 1). In mutant 1440-140-2, a deletion
of the thymine residue at position 24 of liaF caused a frameshift mutation, presumably
truncating the resultant protein. In mutant 1440-141-2, a nonsynonymous point mu-
tation resulted in a change of leucine to serine at position 181 of LiaF. Impairment of
LiaF function in an E. faecalis isolate was shown to cause a 3-fold increase in its
daptomycin MIC and abolished the bactericidal activity of the drug (26). In mutant
1527-140-4, a nonsynonymous point mutation resulted in a change of valine to
glutamic acid at position 129 of LiaS. For the other five derived mutants, no changes in
liaFSR were observed and consequently analysis of other genes that have been
implicated in reduced susceptibility to daptomycin (27) is warranted.

In conclusion, oritavancin demonstrated sustained bactericidal activity in vitro
against VREfm isolates at free-drug exposures expected to occur in patients receiving
a single 1,200 mg-dose. These results support further investigation of its safety and
efficacy in clinical VREfm infections.
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